
Computer Algebra and Operators

Richard Fat eman*
The University of California, Berkeley

Robert Grossmant
University of Illinois at Chicago

January, 1989

(NASB-CR-185396) COMPUWB ALGEBRA B I D N89-26625
OPERATORS [California Univ.) 1 4 p CSCL 1 2 A

Unclas
G3/64 0217702

'supported in part by NSF grant number CCR-8812843, DARPA order #4871, contract
N00039-84-C-0089, the IBM Corporation; the State of California MICRO program.

'supported in part by grant NAG2-513 from the NASA-Ames Research Center.

1

. .-

1 The Symbolic Computation of Operators

After defining the twc ...p ansions

i = l

a computer algebr:. -+cm such as MACSYMA or Maple will quickly com-
pu te

xp(A)exp(B)) = A + B + O (N + 1).

2

ORIGINAL PAGE IS
OF POOR QUACITY

Here O (N + 1) denotes terms containing a product of N + 1 or more A’s
and/or B’s. This computation depends crucially upon the fact that AB =
BA; for o’bjects for which this not true, certain correction terms enter. For
example, if A and B are matrices, then in general AB # B A and

1 1
2

log(exp(A)exp(B)) = A + B - -AB + 5 B A +
The symbolic computation of operator expansions

in a number of ways from the symbolic computation of expressions in com-
muting variables. The papers in this volume consider various aspects of such
computations. In this introduction, we first discuss some of the capabilities
that prove useful when performing computer algebra computations involving
operators. These capabilities may be broadly divided into three areas: the
algebraic manipulation of expressions from the algebra generated by opera-
tors; the algebraic manipulation of the actions of the operators upon other
mathematical objects; and the development of appropriate normal forms
and simplification algorithms for operators and their actions. We then con-
clude the introduction by giving a little background and a brief description
of the problems considered by the authors in this collection.

1.1 Algebra of Operators

Let El, &, . . . , EM denote operators and a a number. Then E1 + E2, E2E1,
and aEl are dl operators of the same type. That is, a finite set of operators
naturally generate an algebra of operators under addition and composition.
Let R(E1,. . . , E M } denote this algebra. This is just the free associative
algebra over R generated by the symbols E l , . . . , EM. The first capability
of a computer algebra system for operators, then, is that i t support the
algebraic operations of addition and composition of operators.

The first issue this raises is how to represent operators and operations
on them in a context which has already usurped most of the notation for
an algebra of expressions. Is it possible to use some multiplication operator
(typically “*”) for operators, or should one use another notation? Maple[2]
uses “62” and Macsyma[4] uses “.” for composition, but juxtaposition for
application. Mathematica[G] takes no special notice of this, but allows the
use of juxtaposition for multiplication. (It thereby maps f (a) into the same
expression as a*f; if you intend to convey the notion f(a), you type f [a].)
In fact, the notation and semantics of operators has at best been a patch
added on to conventional general-purpose algebra systems; by contrast, the

3

most effective computer implementation of operator algebras has been quite
application specific, as for example, in the case of manipulation of pertur-
bation series.

Yet the need for combining operator notation with the generality of
widely available computer algebra systems dictates that we seriously ad-
dress the representation and manipulation of operators. A good test for
any system is to take some simple and familiar concepts and see if they can
be naturally expressed and manipulated. For example, a operator that ex-
presses “differentiation with respect to 2” should be natural. Extensions to
represent the 2nd or the nth derivative should be natural. Mixed derivatives
(with respect to 2 and y) should be possible: a natural operation might be
the interchange of orders of differentiation, and the combination of common
variable “powers”. Evaluation of the derivative at a point, say the origin
(the un-obvious f ’ (0)) is a challenge [2]. Because algebra systems are gen-
erally built to be extensible by procedure definition, data-type extension,
transformation-rule (or pattern-match) extension, and aggregations of data,
it is natural for one to hope that new operators can be defined, and their
significant properties encoded, in a natural form.

There is a tension between expressiveness and precision. In different con-
texts, we have different expectations. Should the algebra system be expected
to treat identical notations in different ways? Consider the notation (L +
a)(y) . This might mean (say if L is a derivative operator) dy /dz + ay. Yet in
other circumstances we might prefer that a constant a be an operator equiv-
alent to a function which returns a, regardless of its argument. In that case,
(L + a)(y) = Ly + a . If an algebra system requires unambiguous notation,
i t may be unnatural in nearly all mathematical contexts. For the two vari-
ations above, Maple would use <LcPx+a*x I x>Oy and <L@x+a I x > @ ~ , respec-
tively while Macsyma would require a declaration declare (a, opscalar)
then (L+a)y for the first and would use (L+constop(a>)y for the latter. A
proposal and implementation for Macsyma by T. H. Einwohner [3] would
use the notation L+a*I I y to mean L(y) -t a * y (Unfortunately, the use of
‘‘I” is at odds with the Maple convention). Einwohner’s design is somewhat
more regular in reflecting the duality between expressions involving opera-
tors (which can be quite arbitrary), and the results of applying the operator
expression to arguments. The use of parameters is an important component
of the design. For example, f (a) l y is an alternative notation for f (y , a > .
Finally, he does not further overload the use of “.” as non-commutative
multiplication by using i t for operator composition.

Another issue is how to best structure the data and the manipulative

4

algorithms for handling expressions from free associative algebras. These
issues have been examined since the earliest days of computer algebra sys-
tems, and are perhaps the aspects of the computer algebra of operators
which can be attacked entirely by conventional means; this usually consti-
tutes a mapping into algebraic tree representations, where most algorithms
can be treated as tree-traversals (as described in any text on data struc-
tures). On the other hand, truly efficient manipulation may dictate more
compact representations, including so-called string-polynomial manipula-
tions, matrix encodings, or other schemes that have been devised for hand
manipulation.

1.2 Actions of Operators

The usefulness of operators to scientists and engineers derives not from their
properties as abstract algebraic objects but rather from their interesting
actions on other mathematical objects. For example, matrices act as linear
transformations on vector spaces, vector fields act as derivations on spaces
of functions, the physicist’s raising and lowering operators act on the space
of polynomials, the algebra generated by shift operators acts on the space
of sequences, and the algebra of maps acts on the space of domains.

This brings us to the second major requirement on a computer algebra
system for operators. They must support the action of operators on objects
from the natural domains of definition of the operators (and presumably the
natural domains of the algebra system). For example, having formed the
matrix expression E = A + A2/2! + . . . + A4/4!, i t is useful to be able to
apply E to vectors. The merging of the two notations leads to a complexity
and variety of actions that is probably the single most important barrier to
satisfactory implementations of operators in computer algebra systems. The
operator E above certainly looks like a polynomial in A; for some purposes
i t can best be treated as a polynomial; in other contexts as in section 1, it
certainly is not equivalent.

There is a more subtle, yet related issue. There is no natural mathemat-
ical notation to specify the various interlocking operations possible on the
mixed domain of operators and operands. For example, consider an operator
F , and its inverse which we will conventionally write as F-’ (even though
i t may have rather little to do with 1/F) and an expression F F-’ 5 . It is
natural for us to apply simplification and “cancel” the operators, yielding
2. It is not so obvious to us, or to the computer, though, whether, in more
complex situations to apply or simplify. Is F F z computed faster if F is

5

“squared” first? Or-is F(F z) , where the parentheses suggest some ordering,
preferable?

Sometimes partial simplification is useful. Consider a definition of a new
operator F :=< 2 I z, n > where we use Maple’s notation to indicate
that z and n are the formal names used for two actual “parameters” to
the operator. If G is another operator (presumably operating on positive
integers) then F (G , 3) is G(l) + G(2) + G(3). Consider < F (l , k) I k >,
where I is an identity operator. At what time (if ever) would a computer
algebra system realize that this is equivalent to < k(k + 1)/2 I k >?

What kind of syntax do we supply for the user to define such a simplifi-
cation? Furthermore, how do we deal with an action of a particular operator
on a domain which is not supported? For example, should the syntax de-
scribing thc - ‘w of shift operators acting on sequences be the same as the
syntax desci,.mig the action of vector fields as derivations on the space of
functions?

How can the implementation of operators as algebraic objects be best
merged with the implementation of operators as objects acting on other
objects in the computer algebra system?

It appears that linguistically, two approaches are possible, and these
are not addressed in Maple or Macsyma. One is to require unambiguous
specification of operations such as operator simplification (so they would
occur on command), a distinct notation for application of operators, and an
explicit translation (back and forth) from operator to functional notation.

Another approach is to use the domains of objects (themselves possi-
bly other operators) to disambiguate the meanings of operators, at least
whenever possible. This may require fairly sophisticated pattern-matching
support which checks the types of arguments. An example used by Gonnet
[a] illustrates this. Consider the expression a x D x D x y. If we assume D is
an operator, each of the three “multiplications” may be a different concept.
The first is symbolic multiplication by a constant. The second is composi-
tion, and the third is application. Yet we were able to disambiguate this by
looking at the types of the “arguments” to X. A constant on the left, a ,
means traditional multiplication; a non-operator on the right, y means that
the operator to the left is being applied to it. A multiplication between two
operators means composition. Note that i t would be an error to simply work
from the right to the left, applying as we go, although for this expression it
might work. Consider a non-integrable form z, and the integration operator
D-’. Then D D-’ z could not be simplified, because the application of the
integration operator would not “work” (unless D were specially coded to

6

“unwrap” an integral).
There are many open questions, and it appears to us that the best pro-

cess for making headway in the introduction of operator calculi in algebraic
manipulation is to explore serious applications, ones which are challenges for
humans and computers. Without further experience such as we see in this
volume of papers, it is too easy to make false starts and empty promises.
We do not know, for example, if it make sense for the language describing
the action of matrices on vectors to be the same as the language describing
the action of differential operators on the space of functions.

While Maple proposes a methodology primarily based on an extension
of procedures, with some original notation for operators, Macsyma uses (for
the most part) already existing notation for non-commutative multiplica-
tion; we expect that users of the Mathematica system will primarily use
pattern matching and notations which look fundamentally like functional
application. Each approach has its advantages and advocates.

1.3 Normal Forms and Simplification

Data structures and algorithms to manipulate operators depend crucially
on the action of the operators upon objects from the natural domains of
definition of the operators. Normal forms for expressions built from matrices
are probably not the best normal forms for expressions built from maps.
Questions about normal forms, simplification, and efficient evaluation of
operator expressions are by and large open.

It appears that another significant area of application of a computer
algebra system is the manipulation of operator expressions to produce sim-
plified or if possible normal forms for the various types and combinations
of supported operators by the computer algebra system. This may involve
transformation of operator expressions to a well-supported domain (typically
polynomials), or collections of rules which drive expressions dgori thmically
or heuristically, toward equivalent but simpler forms.

Given the state of the art, i t seems inevitable that a successful general-
purpose system will have to provide some facility for users to implement
their own normal forms and simplification algorithms for more specialized
types of operators and actions.

7

I

2 Examples of Operators and their Domains

In this section we give brief descriptions of the computer algebra computa-
tions that arise when working with various operators and their actions. The
papers in this collection give careful and complete descriptions of how the
authors dealt with some of the issues mentioned above.

2.1 Perturbation Theory

A classical problem in perturbation theory is to compute approximate so-
lutions to differential equations containing small parameters. Consider van
der Pol’s equation

- d2 + z - E (1 - - z 2)- dz = 0,
dt2 dt

where E # 0 is a small parameter. The starting point is to expand a putative
solution t -+ s (t) in a power series in E

z (t) = zo(t) + € Z l (t) + €2z2(t) + . . . ,
and then substitute this series into the original differential equation to ob-
tain a sequence of differentid equations (one for each power of E) for the
unknown coefficient functions z;(t) . These auxiliary differential equations
have the property that the ith equation involves only the coefficient func-
tions zo(t) , . . ., z ; (t) , so that the sequence of differential equations can be
solved recursively. In the example above, the equations are

d2
dt2 --zo(t) + so@) = 0

There are several ways of approaching these types of computations. Let-
ting k (t) = y(t), Van der Pol’s equation can be written as the first order
system

.(t) = y(t)
?j(t) = - z (t) + E (l - 2(t))y(t) .

8

Let El denote the \rector field yd/dx - xd/ay and let E2 denote the vector
field (1 - z2)yd/ay. Then Van der Pol’s equation becomes

where z (t) = (x(t),y(t)). Notice that E2E1 # E1E2.
Let T,, denote the operator which acts upon functions t -+ z (t) and

returns the first nth terms in a power series expansion in E of the function.
Then the ith auxiliary equation is equivalent to the system of equations
which is the coefficient of 6’ in the expansion of

for n sufficiently large. From this point of view, perturbation theory is
concerned with the symbolic algebra of noncommutative operators such as
E1 and E2 acting on the domain of power series expansions of the form

A different, but related point of view is used by R. Rand in his contribu-
tion “Perturbation Methods and Computer Algebra”. In this paper Rand
describes a computer algebra system built using MACSYMA, which in a sys-
tematic fashion can perform serious perturbation computations, including
the computation of normal forms and center manifold reductions.

2.2

Consider the heat equation in a bounded region R of the Euclidean plane

Finite Difference Operators and Domains

for x E R and t 2 0.
au a2u a2u +- a t ax2 ay2’

- - - -

To compute the temperature u(x, t) numerically using finite differences, we
need to discretize the domain 52, the function u(x,t), and the differential
operator

d a2 d2
at ax2 ay2 e
- _ - - -

This can be done in many ways. Let D denote a finite mesh of points

xi = 50 + iAx for i = 0,. . . , I
~j = y o + j A y f o r j = O , ...,.I

9

covering the regionfl, and let u:j denote the temperature at time nAt at
the mesh point (xo + iAx, yo + jAy).

With the shift operators

we can define the difference operators

and compute the temperature uyT1 given the temperature u:j implicitly
using the scheme

Notice that the basic nbiects are: domains, such as D; functions defined
.)erators defined on the functions, such as
he latter two objects can both be thought

bA, - domain can be thought of as a map from the do-
main to the range of the function; an operator on functions can be thought
of as a map from the space of functions on domains to itself. In the pa-
per “FIDIL: A Language for Scientific Programming” by P. Hilfinger and
P. Colella, the language FIDIL (FInite DIfference Language) is introduced
which makes domains and maps basic data types and provides for the effi-
cient computation of objects built from them. This makes the translation
of standard numerical algorithms into programming statments very simple.

on domains, si!
< : (52

* [’s: L ... --.

Related work is contained in Il l .

2.3 Automatic Der: of Dynamical Equations

The time evolution
bodies joined tor
complicated.
can be difficul

snical system consisting of a system of rigid
massless ball and socket joints can be quite

to write down the correct equations of motion
.md be very useful if a program could automatically

10

ORIGINAL PAGE IS
OF POOR QUALITY

.

derive the equations of motion of this type of mechanical system. Similarly,
an electrical circuit consisting of resistors, capacitors, and voltage sources
can exhibit interesting dynamical behavior. It is an interesting problem
to write a program whose input consists of a description of a mechanical
or electrial system and whose output consists of the differential equations
governing the time evolution of the state variables of the system.

System parameters. System parameters must be defined and specified. For
example, the moment of inertia of a body is defined to be Jbody Q -Qdm(Q),
where m(Q) is the mass distribution of the body. To describe the system,
the mass distributions and topology of the connections of the rigid bodies
must be given, and the moments of inertia must be computed.
Dynamical variables. The dynamical variables must be defined. For exam-
ple, the rotation matrix B(t) of a rigid body, which specifies how the body
is turning in space, must be defined. Using this, the angular velocity R(t)
of the body can be defined via R(t) = B(t)B-'(t) . As a another example,
Newton's Law F (t) = dp(t)/dt defines the force F (t) acting on a body in
terms of the momenta p (t) of the body. Both these example are typical, in
the sense that dynamical variables are often defined by differentiating other
dynamical variables. Notice that this gives rise to differential identities sat-
isfied by the dynamical variables.
Algebraic relations. The dynamical variables not only satisfy differential
relations, but typically algebraic relations determined by the geometry of
the particular system. For example, if q (t) and ~ (t) denote the positions
of the center of mass of bodies 1 and 2 respectively, r (t) denotes the position
of the center of mass of the ensemble of the two bodies, dl(t) and d2(t) their
initial displacements, and B1 (t) and & (t) the rotation matrices describing
the rotation of the bodies, then

A description of the system would include the following:

State variables. Because of the algebraic and differential relations satisfied
by the dynamical variables, it is possible to select some of the dynamical
variables, called state variables, and to construct all of the other dynamical
variables from these. For example, for two bodies, only the position and
velocity of the two bodies and their center of mass need be specified. Alter-
nately, the position and momenta of the two bodies, and of their center of
mass, can be specified.

11

ORIGINAL PAGE -IS
OF POOR QUALlm

Evolulion of state Variables. Finally, differential equations giving the time
evolution of the state variables need to be given, together with the corre-
sponding initial conditions. For example, the initial positions and velocities
of each of the bodies and of each of the joints must be specified in order for
the dynamical equaticns giving the time evolution of the state variables to
be integrated.

The contribution “Multibody Simulation in an Object Oriented Pro-
gramming Environment” by N. Sreenath and P.S. Krishnaprasad undertakes
the automatic derivation of the equations of motion for systems of coupled
rigid bodies i p the plane, while the contribution “The Dynamicist’s Work-
bench. ’ ”reparation of Numerical Experiments” by H. Abelson
an 1 electrical networks consisting of resistors, capacitors,
ant 3ucl-LI ,~. Both papers start with a description of the system,
and by using a variety of symbolic and symbolic/numeric techniques even-
tually compute numerical simulations of the differential equations which the
programs automatically compute.

The papers treat the problem of finding state variables differently. The
paper by Abelson and Sussman finds state variables using a symbolic Newton
iteration to eliminate relations among dynamical variables. The paper by
Sreenath and Krishnapr: “ses symmetries of the mechanical system and
a technique from geomeLI chanics called reduction to derive equations
of motion on a smaller dimensional phase space consisting of state variables.

Studies such as these make heavy use of symbolic computation of oper-
ators. For example, the dynamical equations of a system of coupled rigid
bodies can be written as p(t) = { F , H } , where H is the Hamiltonian of the
system, and both F and H evolve on the appropriate phase space P. Here
{ e , -} is a noncommutative operator defined on

C y P) x C”(P) + C“(P).

2.4 I;.. - ‘7 and Vector Field Systems

Recall
origin 111 RN is of the form

, a smooth vector field F (z) defined in a neighborhood of the

where a 1 (s) , . . . , U N (Z) are smooth functions defined in a neighborhood of
the origin. The Lie brackets of two vector fields F (z) and G(s) is defined

12

r . . .

to be -

It is a fun’damental property of Lie brackets that although they appear to
be second order differential operators they are in fact first order differential
operators because of the cancellation of the second order partial derivatives.
In other words, the Lie bracket of two vector fields is a vector field. It
therefore makes sense to form iterated Lie brackets such as [[F, GI, GI.

Observe that the Lie bracket of two vector fields is a measure of how far
from commuting the two vector fields are. For example, the Lie brackets
of the coodinate vector fields F; = d / d q are all zero, indicating that these
vector fields all commute with each other. In other words, FiFj = F , F , .
On the other hand, the Lie bracket of the vector fields F1 = z 2 d / d q and
F2 = d/dx2 is equal to

[F,G] = F (z) G (z) - G (z) F (z) .

[F2, Fll = d p l .
Let F (z) and Gl(z), . . . ,Gm(z) denote smooth vector fields defined i n

a neighborhood of the origin in RN. It turns out that the local behavior of
the nonlinear control system

m

i (t) = F (z (~)) + C ~ ; (t) G i (~ (t)) , ~ (0) = zo E RN,
i=l

is determined by the algebraic properties of iterated Lie brackets of the F
and G’s. This is analogous to the fact that the local behavior of a smooth
function is determined by its Taylor coefficients. Because of this fact, ques-
tions about the dynamical behavior of control trajectories can be reduced
to symbolic questions about the algebraic properties of the noncommutative
operators F, GI,. . . , G, acting on the domain Cm(RN) of smooth functions
on RN.

The contribution “Symbolic Computations in Differential Geometry Ap-
plied to Nonlinar Control Systems” by 0. Akhrif and G. L. Blankenship
describes a software package written in the computer algebra system MAC-
SYMA, which through the symbolic computation of the proper Lie bracket
expressions, can analyse system theoretic properties of a nonlinear control
system, such as feedback equivalence, left-invertibility, or the design of con-
trol laws.

The contribution “Vector Fields and Nilpotent Lie Algebras” by M.
Grayson and R. Grossman considers conditions on the Lie brackets which
guarantee that the trajectories of a vector field system can be explicitly in-
tegrated in closed form. In general this cannot be expected and the game

13

. . . .

ORIGINAL PAGE IS
OF POOR QUALITY

is to find as large aclass of such systems as possible. The paper gives some
simple examples of such systems which were computed used the computer
algebra system Maple.

References

[11 David Balaban, “The Automatic Programming Project,” Lawrence Liv-
ermore National Laboratory Technical Report, 1987.

[2] Gastoil /-- .onnet, “An Implementation of Operators for Symbolic N -
gebra bj>,ems,” in Pmc. A C M S Y M S A C ’86 Conf., Waterloo, Ontario,
Canada, 1986, 239-243.

[3] Theodore H. Einwohner, “A Vaxima Implementation of Operator Cal-
culus,” Lawrence Livermore National Laboratory Computer Science Re-
port TS88-60, Dec. 1988.

[4] Jeffery P. Golden, “An Operator Algebra for MACSYMA,” in Proc.
ACM S Y M S A C ’86 Conf., Waterloo, Ontario, Canada, 1986, 244-246.

[5] Stephen M. Watt and Jean Della Dora, “Algebra Snapshot: Linear Or-
dinary Differential Operators,” Scratchpad I1 Newsletter, (1986) Vol. 1,
NO. 2, 14-18.

[6] Stephen Wolfram, Mathernatica: A System for Doing Mathematics by
Computer, Addison- Wesley, 1988.

14

